星际争霸2谷歌AI大战职业选手:结果惨不忍睹

【中关村在线日消息,今天凌晨两点,谷歌人工智能工作室DeepMind与暴雪进行了联合直播。直播中DeepMind公布了此前自家人工智能工具“AlphaStar”与星际争霸2职业选手的比赛成绩,最终“AlphaStar”取得了10:1的大胜。

据了解,在之前的比赛中,“AlphaStar”均以5:0的比分战胜了人类职业选手“TLO”和“MaNa”。最后直播的一场比赛中,DeepMind限制了AlphaStar的游戏视角,并在没有测试的前提下与MaNa进行比赛,让人类终于赢了一场。

就在本周二的时候,芬兰电竞战队ENCE也发布公告:WCS星际争霸2全球总冠军,人称大魔王的芬兰选手Serral将在2月15日与AlphaStar上演一场终极人机大战。

更多精彩报道,尽在https://www.yangjie90.com

围棋之后 AI继续碾压《星际争霸2》人类职业玩家

在DeepMind的伦敦总部,人们正在观看DeepMind的AI与人类职业玩家对决

网易智能讯1月25日消息,谷歌旗下DeepMind开发的人工智能AIphaStar在《星际争霸2》(Starcraft II)中击败了两位人类职业玩家,这是AI领域的新里程碑。在YouTube和Twitch上播放的比赛中,AI玩家在连续10局中反复击败人类。而在最后的对决中,职业选手格里戈尔兹·“曼娜”·科明兹(Grzegorz “MaNa” Komincz)为人类赢得了唯一的胜利。

与兄弟AI AIphago登顶的围棋所不同的是,《星际争霸2》是不完美信息系统,有着阻碍信息顺利获取的战争迷雾,除此之外,操作的单位数量和频率较大,且存在多线作战,需要同时兼顾后方经营,和前方多线战事。显然,在多线决策方面AI的优势要比线性思维的人类要大得多。

DeepMind的研究联席负责人戴维·西尔弗(David Silver)在赛后表示:“AI的历史被打上了许多重大的、标杆性胜利的印记。尽管还有很多工作要做,但我希望未来的人们在回顾(今天)时,认为这是AI系统向前迈进了一步的象征。”

在视频游戏里击败人类玩家似乎是AI开发过程中的一个小插曲,但这也是一个重大的研究挑战。《星际争霸2》这样的游戏比围棋之类棋盘游戏更难玩。在视频游戏中,AI无法通过观察每个棋子的移动来计算下一步棋,它们必须实时做出反应。

这些因素似乎对DeepMind被称为AlphaStar的AI系统并未构成多大障碍。首先,它打败了人类职业玩家达里奥·温什(Dario Wunsch,即TLO),然后将目标对准MaNa。这些比赛最初是于去年12月份在DeepMind的伦敦总部举行的,但该公司今天播放了AlphaStar与MaNa的最后一场比赛,这是人类玩家唯一获胜的比赛。

《星际争霸》的职业评论员形容AlphaStar的表现是“非凡的”、“超人的”。在《星际争霸2》中,玩家在建立基地、训练军队和入侵敌人领土之前,会从相同地图的不同侧面展开行动。AlphaStar尤其擅长所谓的“微操”,即在战场上快速、果断地控制单个或少量部队的能力。

尽管人类玩家有时能够训练出更强大的作战单位,但AlphaZero还是能够在近距离内战胜他们。在一场游戏中,AlphaStar用名为Stalker的快速移动单位骚扰MaNa。评论员凯文·范德库伊(Kevin van der Kooi)将其描述为“非凡的单位控制能力,很不常见”。MaNa在赛后表示:“如果我和任何人类比赛,他们都不会将Stalker运用得如此出神入化。”

这与我们在其他高级游戏AI中看到的行为相呼应。当OpenAI去年在《Dota 2》中与人类职业选手对决时,它们最后以失败告终。但专家们指出,这些AI是以一种“清晰而精确”的方式进行着游戏。对此,我们无需感到奇怪,快速做出没有任何错误的决定是机器的天赋异能。

专家们已经开始仔细分析这些比赛,并就AlphaStar是否拥有任何不公平的优势展开辩论。这些AI在某些方面依然显得笨拙,例如,AlphaStar的每分钟点击依然比人类低。但与人类玩家不同的是,它每次都能够查看整个地图,而不是手动导航。

DeepMind的研究人员表示,这并没有为AlphaStar提供真正的优势,因为它在任何时间只关注地图的某个特定部分。但是,正如比赛所显示的那样,这并没有阻止AlphaStar同时熟练地控制三个不同区域的单位。评论员们表示,这对人类来说是不可能的。值得注意的是,当MaNa在直播比赛中击败AlphaStar时,AI使用的是受限的摄像头视角。

AlphaStar的另一个潜在痛点是,人类玩家虽然是职业玩家,但却不是世界冠军的标准。TLO还必须扮演《星际争霸2》中他不熟悉的三个种族之一。

AlphaStar处理过程的图形展示,该系统从上到下能看到整个地图,并预测哪些行为将帮助获得胜利

撇开这些不谈,专家们称这场比赛是AI向前迈出的重要一步。长期参与《星际争霸》AI场景的AI研究人员戴夫·丘吉尔(Dave Churchill)表示:“我认为AI取得了重大成就,至少比我在AI研究人员中听到的最乐观猜测提前了一年。”然而,邱吉尔补充说,由于DeepMind尚未发布任何关于这项工作的研究论文,因此很难说它是否显示出任何技术上的飞跃。他指出:“我还没有读过这篇博客文章,也没有接触过相关的论文或技术细节。”

佐治亚理工学院AI副教授马克·里德尔(Mark Riedl)表示,他对结果并不那么惊讶,AI获得胜利只是“时间问题”。里德尔补充说,他不认为这些比赛表明《星际争霸2》已经被AI彻底掌控。他表示:“在上一场直播比赛中,限制AlphaStar的某些能力确实消除了它的许多人为优势。但我们看到的更大的问题是,当人们可以把AI推出舒适区时,它就会崩溃。”

丹麦哥本哈根信息技术大学的塞巴斯蒂安·里斯(Sebastian Risi)表示:“这看起来是向前迈出的一大步。我们不知道这其间有多少创新,但培训AI的方式似乎是关键。”里斯的同事尼尔斯·贾斯特森(Niels Justesen)说:“我没想到会发生这样的事情,尤其是因为之前的端到端学习《星际争霸》的尝试远远没有达到人类的水平。”

最终,这类工作的最终目标不是利用AI在视频游戏中击败人类,而是改进AI的训练方法,尤其是为了创建能够在《星际争霸》等复杂虚拟环境中运行的系统。

为了训练AlphaStar, DeepMind的研究人员使用了被称为强化学习的方法。AI智能体基本上是通过反复尝试才能达到某些目标,比如赢球或者仅仅是生存下去。它们首先通过模仿人类玩家来学习,然后在类似竞技比赛中相互对决。最强的AI会存活下来,最弱的则被淘汰。DeepMind估计,其每个AlphaStar智能体都以这种方式积累了大约200年的游戏时间,游戏速度也在加快。

DeepMind很清楚自己开展这项工作的目标。AlphaStar项目联合负责人奥里尔·维尼亚斯(Oriol Vinyals)说:“首先,也是最重要的,DeepMind的任务是建立通用AI,它可以执行人类所能完成的任何心理任务。要实现这个目标,最重要的就是对我们的AI智能体在各种任务中的表现进行基准测试。”

科技媒体Engadget评论道,谷歌旗下的AI子公司DeepMind已经转向电脑游戏,其AI系统始终在进行微调,以适应《星际争霸2》。今天的《星际争霸2》比赛,是AlphaStar与职业玩家的第一次正面交锋。在两场五局的系列比赛中,AlphaStar战胜了职业选手TLO和MaNa,赢得了10场胜利。而在连续十次失利后,人类玩家终于赢得了最后一场比赛。

虽然游戏并不能很好地展示这项技术,但它确实描绘了DeepMind在理解人类行为方面取得的长足进步。最终,这项技术可以被用于许多其他领域,如理论物理学,甚至医学。纽约大学的朱利安·加里乌斯(Julian lius)表示:“我认为《星际争霸》就像是在经营一家公司,尤其是后勤部门。关键是要规划研发,在正确的时间把产品送到正确的地方,避免瓶颈。”

AlphaStar也可以帮助专业人士改善他们的策略。马耳他大学的Georgios Yannakakis称:“如果AI能够找到最优的游戏方式,那将是非常令人兴奋的。这毕竟是人们构建AI的原因之一。目前来说,很多人都不想在任何游戏中遇到DeepMind的AI对手,更不用说像《星际争霸2》中与其进行激烈对决了。(选自:The Verge编译:网易智能 参与:小小)

更多精彩报道,尽在https://www.yangjie90.com

活塞负雄鹿遭季后赛13连败追平NBA历史纪录

  北京时间4月21日,NBA季后赛首轮继续进行。活塞主场103-119不敌雄鹿,总比分0-3落后对手。上半场比赛,雄鹿便建立起13分的领先优势。易边再战,活塞毫无反扑之势,双方分差一度来到24分。这是活塞在季后赛中遭遇的第13场连败,追平尼克斯保持的NBA球队季后赛连败纪录。

  阿德托昆博14分10篮板,洛佩斯19分7篮板,布莱德索19分6篮板5助攻;活塞方面,格里芬27分,德拉蒙德12分12篮板。

  更多精彩报道,尽在https://www.yangjie90.com